# Generalized Graph Signal Processing

Feng Ji Wee Peng Tay

Nanyang Technological University

November 2019



## Graph signal processing

• Signal f on a graph G = (V, E):  $f : V \mapsto \mathbb{C}$ 



- Examples: sensor networks, social networks, transportation networks, ...
- Exploits the underlying graph structure (correlations between nodes) to perform signal processing and inference.

イロト イヨト イヨト イヨト

## Graph signal processing

• Signal f on a graph G = (V, E):  $f : V \mapsto \mathbb{C}$ 



- Examples: sensor networks, social networks, transportation networks, ...
- Exploits the underlying graph structure (correlations between nodes) to perform signal processing and inference.
- Main idea: represent f using basis  $\Phi$  associated with graph shift operator  $A_G = \Phi \Lambda \Phi^*$  (adjacency, Laplacian, etc. that captures the local graph structure).

$$\mathsf{GFT:}\; \widehat{f} = \Phi^* f$$

## Graph signal processing

• Signal f on a graph G = (V, E):  $f : V \mapsto \mathbb{C}$ 



- Examples: sensor networks, social networks, transportation networks, ...
- Exploits the underlying graph structure (correlations between nodes) to perform signal processing and inference.
- Main idea: represent f using basis  $\Phi$  associated with graph shift operator  $A_G = \Phi \Lambda \Phi^*$  (adjacency, Laplacian, etc. that captures the local graph structure).

GFT: 
$$\hat{f} = \Phi^* f \stackrel{[1]}{=} (\langle f, \phi \rangle_{\mathbb{C}^n})_{\phi \in \Phi}$$

<sup>[1]</sup> B. Girault, A. Ortega, and S. S. Narayanan, "Irregularity-aware graph Fourier transforms," IEEE Transactions on Signal Processing, vol. 66, no. 21, pp. 5746–5761, Nov. 2018.

## Time-vertex GSP

• [2]:  $f(v, \cdot) \in \mathbb{C}^T$  for each  $v \in V$ ,  $T < \infty$ , is a discrete time series with common time indices (e.g., synchronous uniform sampling at every vertex).



<sup>[2]</sup> F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, "A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs," IEEE Trans. Signal Process., vol. 66, no. 3, pp. 817–829, Feb. 2018.

## Time-vertex GSP

• [2]:  $f(v, \cdot) \in \mathbb{C}^T$  for each  $v \in V$ ,  $T < \infty$ , is a discrete time series with common time indices (e.g., synchronous uniform sampling at every vertex).



• For each  $v \in V$ , can apply DFT on  $f(v, \cdot)$ :

$$\mathsf{DFT}(f(v,\cdot)) = \Xi^* \operatorname{vec}(f(v,\cdot)),$$

where  $\Xi^*$  is the DFT matrix.

<sup>[2]</sup> F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, "A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs," *IEEE Trans. Signal Process.*, vol. 66, no. 3, pp. 817–829, Feb: 2018.

## Time-vertex GSP

• [2]:  $f(v, \cdot) \in \mathbb{C}^T$  for each  $v \in V$ ,  $T < \infty$ , is a discrete time series with common time indices (e.g., synchronous uniform sampling at every vertex).



• For each  $v \in V$ , can apply DFT on  $f(v, \cdot)$ :

$$\mathsf{DFT}(f(v,\cdot)) = \Xi^* \operatorname{vec}(f(v,\cdot)),$$

where  $\Xi^*$  is the DFT matrix.

• Joint time-vertex Fourier transform: view f = (f(v, t)) as a matrix,

TV-transform: 
$$\hat{f} = \Phi^* f \overline{\Xi}$$
.

<sup>[2]</sup> F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, "A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs," *IEEE Trans. Signal Process.*, vol. 66, no. 3, pp. 817–829, Feb::2018.

## Time-vertex GSP

• [2]:  $f(v, \cdot) \in \mathbb{C}^T$  for each  $v \in V$ ,  $T < \infty$ , is a discrete time series with common time indices (e.g., synchronous uniform sampling at every vertex).



• For each  $v \in V$ , can apply DFT on  $f(v, \cdot)$ :

$$\mathsf{DFT}(f(v,\cdot)) = \Xi^* \operatorname{vec}(f(v,\cdot)),$$

where  $\Xi^*$  is the DFT matrix.

• Joint time-vertex Fourier transform: view f = (f(v, t)) as a matrix,

TV-transform: 
$$\hat{f} = \Phi^* f \overline{\Xi}$$
.

### • A representation in the basis $\Phi \otimes \Xi$ .

• Missing samples.



- Missing samples.
- If vertex domain dimension = 2, can reconstruct.



イロト イヨト イヨト イヨト

- Missing samples.
- If vertex domain dimension = 2, can reconstruct.



イロト イヨト イヨト イヨト

- Missing samples.
- If vertex domain dimension = 2, can reconstruct.
- However, asynchronous sampling (e.g., sensor networks) ... now impossible to reconstruct the signal.



イロト イヨト イヨト イヨ

## Generalized GSP

• Signal at each vertex is from an infinite dimensional separable Hilbert space  $\mathcal{H} = L^2(\Omega, \mu).$ 



イロト イヨト イヨト イヨト

## Generalized GSP

- Signal at each vertex is from an infinite dimensional separable Hilbert space  $\mathcal{H} = L^2(\Omega, \mu).$
- Maybe non-bandlimited in  $\Omega$  direction (Shannon-Nyquist: impossible to represent as discrete time series).



イロト イヨト イヨト イヨ

## Generalized GSP

- Signal at each vertex is from an infinite dimensional separable Hilbert space  $\mathcal{H} = L^2(\Omega, \mu).$
- Maybe non-bandlimited in  $\Omega$  direction (Shannon-Nyquist: impossible to represent as discrete time series).
- Non-synchronous sampling (time indices are not same for different vertices).



イロト イヨト イヨト イヨ

## Generalized GSP

- Signal at each vertex is from an infinite dimensional separable Hilbert space  $\mathcal{H} = L^2(\Omega, \mu).$
- Maybe non-bandlimited in  $\Omega$  direction (Shannon-Nyquist: impossible to represent as discrete time series).
- Non-synchronous sampling (time indices are not same for different vertices).
- Allows joint modeling of f(v, x) over  $v \in V$ ,  $x \in \mathcal{H}$ .



\*ロト \*個ト \* 国ト \* 国

## The rest of this talk...

1 Generalized Graph Signals and  $\mathcal{F}$ -Transform

## 2 Sampling Theorem

## 3 Filtering



### Details in

F. Ji and W. P. Tay, "A Hilbert space theory of generalized graph signal processing," *IEEE Trans. Signal Process.*, 2019, accepted. [Online]. Available: https://arxiv.org/abs/1904.11655.

## Outline



### 2 Sampling Theorem

## 3 Filtering



• Tensor product 
$$\mathbb{C}^n \otimes \mathcal{H} = \left\{ \sum_{i=1}^n v_i \otimes h_i \right\}$$
 with

$$v_1 \otimes h + v_2 \otimes h = (v_1 + v_2) \otimes h;$$

$$v \otimes h_1 + v \otimes h_2 = v \otimes (h_1 + h_2);$$

• Tensor product 
$$\mathbb{C}^n \otimes \mathcal{H} = \left\{ \sum_{i=1}^n v_i \otimes h_i \right\}$$
 with  
(a)  $v_1 \otimes h + v_2 \otimes h = (v_1 + v_2) \otimes h;$   
(b)  $v \otimes h_1 + v \otimes h_2 = v \otimes (h_1 + h_2);$   
(c)  $rv \otimes h = v \otimes rh$  for  $r \in \mathbb{C}$ .

• Inner product  $\langle \cdot, \cdot \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$  induced (linearly) by:

$$\langle v_1 \otimes h_1, v_2 \otimes h_2 \rangle_{\mathbb{C}^n \otimes \mathcal{H}} = \langle v_1, v_2 \rangle_{\mathbb{C}^n} \langle h_1, h_2 \rangle_{\mathcal{H}}.$$

 $\mathbb{C}^n \otimes \mathcal{H}$  is a Hilbert space.

• Tensor product 
$$\mathbb{C}^n \otimes \mathcal{H} = \left\{ \sum_{i=1}^n v_i \otimes h_i \right\}$$
 with  
  
•  $v_1 \otimes h + v_2 \otimes h = (v_1 + v_2) \otimes h;$   
•  $v \otimes h_1 + v \otimes h_2 = v \otimes (h_1 + h_2);$   
•  $rv \otimes h = v \otimes rh$  for  $r \in \mathbb{C}$ .

• Inner product  $\langle\cdot,\,\cdot\rangle_{\mathbb{C}^n\otimes\mathcal{H}}$  induced (linearly) by:

$$\langle v_1 \otimes h_1, v_2 \otimes h_2 \rangle_{\mathbb{C}^n \otimes \mathcal{H}} = \langle v_1, v_2 \rangle_{\mathbb{C}^n} \langle h_1, h_2 \rangle_{\mathcal{H}}.$$

 $\mathbb{C}^n \otimes \mathcal{H}$  is a Hilbert space.

• Generalized graph signal  $f: V \mapsto \mathcal{H}$ .  $S(G, \mathcal{H})$  - space of graph signals in  $\mathcal{H}$ .

• Tensor product 
$$\mathbb{C}^n \otimes \mathcal{H} = \left\{ \sum_{i=1}^n v_i \otimes h_i \right\}$$
 with  
•  $v_1 \otimes h + v_2 \otimes h = (v_1 + v_2) \otimes h;$   
•  $v \otimes h_1 + v \otimes h_2 = v \otimes (h_1 + h_2);$   
•  $rv \otimes h = v \otimes rh$  for  $r \in \mathbb{C}$ .

• Inner product  $\langle \cdot, \cdot \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$  induced (linearly) by:

$$\langle v_1 \otimes h_1, v_2 \otimes h_2 \rangle_{\mathbb{C}^n \otimes \mathcal{H}} = \langle v_1, v_2 \rangle_{\mathbb{C}^n} \langle h_1, h_2 \rangle_{\mathcal{H}}.$$

 $\mathbb{C}^n \otimes \mathcal{H}$  is a Hilbert space.

• Generalized graph signal  $f: V \mapsto \mathcal{H}$ .  $S(G, \mathcal{H})$  - space of graph signals in  $\mathcal{H}$ .

### Lemma

 $S(G, \mathcal{H})$  is a Hilbert space isomorphic to  $\mathbb{C}^n \otimes \mathcal{H}$ , |V| = n.

•  $A_G$  : self-adjoint graph shift operator of G, eigenvectors  $\Phi$  form orthonormal basis of  $\mathbb{C}^n$ 

- $A_G$  : self-adjoint graph shift operator of G, eigenvectors  $\Phi$  form orthonormal basis of  $\mathbb{C}^n$
- A: compact, self-adjoint operator on  $\mathcal{H}$ , eigenvectors  $\Xi$  of A form orthonormal basis of  $\mathcal{H}$  (Hilbert-Schmidt Theorem)

# $\mathcal{F}\text{-transform}$

- $A_G$  : self-adjoint graph shift operator of G, eigenvectors  $\Phi$  form orthonormal basis of  $\mathbb{C}^n$
- A: compact, self-adjoint operator on  $\mathcal{H}$ , eigenvectors  $\Xi$  of A form orthonormal basis of  $\mathcal{H}$  (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$  is a basis for  $\mathbb{C}^n \otimes \mathcal{H}$ .
- Joint *F*-transform:

 $\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$ 

- $A_G$  : self-adjoint graph shift operator of G, eigenvectors  $\Phi$  form orthonormal basis of  $\mathbb{C}^n$
- A: compact, self-adjoint operator on  $\mathcal{H}$ , eigenvectors  $\Xi$  of A form orthonormal basis of  $\mathcal{H}$  (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$  is a basis for  $\mathbb{C}^n \otimes \mathcal{H}$ .
- Joint *F*-transform:

 $\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$ 

$$= \left\langle (\left\langle f(v,\cdot), \xi \right\rangle_{\mathcal{H}})_{v \in V}, \phi \right\rangle_{\mathbb{C}^n}$$

- $A_G$  : self-adjoint graph shift operator of G, eigenvectors  $\Phi$  form orthonormal basis of  $\mathbb{C}^n$
- A: compact, self-adjoint operator on  $\mathcal{H}$ , eigenvectors  $\Xi$  of A form orthonormal basis of  $\mathcal{H}$  (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$  is a basis for  $\mathbb{C}^n \otimes \mathcal{H}$ .
- Joint *F*-transform:

$$\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$$

Fourier series, Fourier transform, wavelet transform, Chebyshev poly.

$$= \left\langle (\overbrace{\langle f(v,\cdot), \xi \rangle_{\mathcal{H}}}^{\sim})_{v \in V}, \phi \right\rangle_{\mathbb{C}^n}$$

- $A_G$  : self-adjoint graph shift operator of G, eigenvectors  $\Phi$  form orthonormal basis of  $\mathbb{C}^n$
- A: compact, self-adjoint operator on  $\mathcal{H}$ , eigenvectors  $\Xi$  of A form orthonormal basis of  $\mathcal{H}$  (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$  is a basis for  $\mathbb{C}^n \otimes \mathcal{H}$ .
- Joint *F*-transform:

$$\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$$

Fourier series, Fourier transform, wavelet transform, Chebyshev poly.,

$$= \underbrace{\left\langle (\left\langle f(v,\cdot), \xi \right\rangle_{\mathcal{H}})_{v \in V}, \phi \right\rangle_{\mathbb{C}^{n}}}_{\mathsf{GFT}}$$

- $A_G$  : self-adjoint graph shift operator of G, eigenvectors  $\Phi$  form orthonormal basis of  $\mathbb{C}^n$
- A: compact, self-adjoint operator on  $\mathcal{H}$ , eigenvectors  $\Xi$  of A form orthonormal basis of  $\mathcal{H}$  (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$  is a basis for  $\mathbb{C}^n \otimes \mathcal{H}$ .
- Joint *F*-transform:

$$\mathcal{F}_f(\phi \otimes \xi) = \langle f, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$$

Fourier series, Fourier transform, wavelet transform, Chebyshev poly.,

$$= \underbrace{\left\langle (\overline{\langle f(v,\cdot), \xi \rangle_{\mathcal{H}}})_{v \in V}, \phi \right\rangle_{\mathbb{C}^{n}}}_{\mathsf{GFT}}$$
$$= \underbrace{\langle (\langle f(\cdot, x), \phi \rangle_{\mathbb{C}^{n}})_{x \in \Omega}, \xi \rangle_{\mathcal{H}}}_{\mathcal{H}}$$

イロト イヨト イヨト イヨト

- $A_G$  : self-adjoint graph shift operator of G, eigenvectors  $\Phi$  form orthonormal basis of  $\mathbb{C}^n$
- A: compact, self-adjoint operator on  $\mathcal{H}$ , eigenvectors  $\Xi$  of A form orthonormal basis of  $\mathcal{H}$  (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$  is a basis for  $\mathbb{C}^n \otimes \mathcal{H}$ .
- Joint *F*-transform:

$$\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$$

Fourier series, Fourier transform, wavelet transform, Chebyshev poly.,

$$= \underbrace{\left\langle (\overline{\langle f(v,\cdot), \xi \rangle_{\mathcal{H}}})_{v \in V}, \phi \right\rangle_{\mathbb{C}^{n}}}_{\mathsf{GFT}}$$
$$= \langle (\langle f(\cdot, x), \phi \rangle_{\mathbb{C}^{n}})_{x \in \Omega}, \xi \rangle_{\mathcal{H}}$$

• 
$$f = \sum_{\phi \otimes \xi} \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi$$

イロト イヨト イヨト イヨト

•  $\mathcal{H} = \mathbb{C}$ , can take  $\Xi = \{1\}$  and  $\mathcal{F}$ -transform = GFT.

メロト メタト メヨト メヨト

- $\mathcal{H} = \mathbb{C}$ , can take  $\Xi = \{1\}$  and  $\mathcal{F}$ -transform = GFT.
- $\mathcal{H} = L^2(G')$  with discrete measure, where G' = (V', E') is a finite graph.



- $\mathcal{H} = \mathbb{C}$ , can take  $\Xi = \{1\}$  and  $\mathcal{F}$ -transform = GFT.
- $\mathcal{H} = L^2(G')$  with discrete measure, where G' = (V', E') is a finite graph.
  - ▶  $S(G, \mathcal{H})$  signals on product graph  $G \times G'$ . Suitable A:  $\mathcal{F}$ -transform = GFT



- $\mathcal{H} = \mathbb{C}$ , can take  $\Xi = \{1\}$  and  $\mathcal{F}$ -transform = GFT.
- $\mathcal{H} = L^2(G')$  with discrete measure, where G' = (V', E') is a finite graph.
  - ▶ S(G, H) signals on product graph  $G \times G'$ . Suitable A:  $\mathcal{F}$ -transform = GFT
  - $G' = path graph: \mathcal{F}$ -transform = TV-transform



## Example of infinite dimensional $\mathcal{H}$

•  $\mathcal{H} = \text{subspace of } L^2([-\pi,\pi],\lambda_{\text{Leb.}}) \text{ consisting of } f \text{ such that } f(-\pi) = f(\pi).$ 

メロト メタト メヨト メヨト

## Example of infinite dimensional $\mathcal{H}$

•  $\mathcal{H} =$  subspace of  $L^2([-\pi,\pi], \lambda_{\text{Leb.}})$  consisting of f such that  $f(-\pi) = f(\pi)$ . • Choose

$$Af(x) = \frac{i}{2} \left( \int_{-\pi}^{x} f(y) \mathrm{d}y - \int_{x}^{\pi} f(y) \mathrm{d}y \right).$$

イロト イヨト イヨト イヨト
## Example of infinite dimensional $\mathcal{H}$

•  $\mathcal{H} =$  subspace of  $L^2([-\pi,\pi],\lambda_{\text{Leb.}})$  consisting of f such that  $f(-\pi) = f(\pi)$ . • Choose

$$Af(x) = \frac{i}{2} \left( \int_{-\pi}^{x} f(y) \mathrm{d}y - \int_{x}^{\pi} f(y) \mathrm{d}y \right).$$

• A is compact with eigenvectors  $\Xi = \left\{ \frac{\exp(imx)}{\sqrt{2\pi}} : m \in \mathbb{Z} \right\}$  (Fourier series basis):

$$f(x) = \sum_{m \in \mathbb{Z}} \frac{a_m}{\sqrt{2\pi}} e^{imx}, \ a_m \in \mathbb{C} \text{ for all } m \in \mathbb{Z}.$$

## Example of infinite dimensional $\mathcal{H}$

•  $\mathcal{H} =$  subspace of  $L^2([-\pi,\pi], \lambda_{\text{Leb.}})$  consisting of f such that  $f(-\pi) = f(\pi)$ . • Choose

$$Af(x) = \frac{i}{2} \left( \int_{-\pi}^{x} f(y) \mathrm{d}y - \int_{x}^{\pi} f(y) \mathrm{d}y \right).$$

• A is compact with eigenvectors  $\Xi = \left\{ \frac{\exp(imx)}{\sqrt{2\pi}} : m \in \mathbb{Z} \right\}$  (Fourier series basis):

$$f(x) = \sum_{m \in \mathbb{Z}} \frac{a_m}{\sqrt{2\pi}} e^{imx}, \ a_m \in \mathbb{C} \text{ for all } m \in \mathbb{Z}.$$

Fredholm operator

$$Af(x) = \int_{\Omega} K(x,y) f(y) \mathrm{d} \mu(y),$$

Hermitian  $K \in L^2(\Omega \times \Omega) \implies A$  compact, self-adjoint. Choose different kernels for different applications.

Generalized Graph Signal Processing

November 2019 11 / 36

• Information propagation over a network: SI, SIR, SIRI



Source: J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012

• Information propagation over a network: SI, SIR, SIRI



Source: J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012

• Signal at each node v:  $f(v) \in L^2([0,T])$ , step function unbandlimited in time domain.

• Information propagation over a network: SI, SIR, SIRI



Source: J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012

- Signal at each node v:  $f(v) \in L^2([0,T])$ , step function unbandlimited in time domain.
- Suppose infection rate  $\lambda_I = 1$ , what is the recovery rate  $\lambda_R$ ?

• Information propagation over a network: SI, SIR, SIRI



Source: J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012

- Signal at each node v:  $f(v) \in L^2([0,T])$ , step function unbandlimited in time domain.
- Suppose infection rate  $\lambda_I = 1$ , what is the recovery rate  $\lambda_R$ ?
- Loss of information in using
  - GSP (aggregated statistics over time) or
  - TV-GSP (uniform sampling over time).

< □ > < 同 > < 回 > < 回 >



Facebook network,  $\lambda_I = 1$ :  $\lambda_R = 0$ ,  $\lambda_R = 1/5$ ,  $\lambda_R = 1/2$  and  $\lambda_R = 1$ .



Enron email network,  $\lambda_I = 1$ :  $\lambda_R = 0$ ,  $\lambda_R = 1/5$ ,  $\lambda_R = 1/2$  and  $\lambda_R = 1$ .

#### Outline

Generalized Graph Signals and  ${\mathcal F} ext{-}\mathsf{Transform}$ 

2 Sampling Theorem

#### 3 Filtering



• Joint sampling over vertex and Hilbert space domains.

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:



A (1) > A (2) > A

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:



• Suppose  $f \in \operatorname{span}(\Phi' \otimes \Xi')$  - bandlimited.

• • • • • • • • • • • •

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:



- Suppose  $f \in \operatorname{span}(\Phi' \otimes \Xi')$  bandlimited.
- Sampling: choose  $W \subset V \times \Omega$  such that f is uniquely determined by W.

• • • • • • • • • • • •

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:



- Suppose  $f \in \operatorname{span}(\Phi' \otimes \Xi')$  bandlimited.
- Sampling: choose  $W \subset V \times \Omega$  such that f is uniquely determined by W.
- $f \in \operatorname{span}(\Phi' \otimes \Xi') \implies |W| \ge |\Phi'| \cdot |\Xi'|$ . But not all sampling schemes work.

< ロ > < 同 > < 三 > < 三 )

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:



- Suppose  $f \in \operatorname{span}(\Phi' \otimes \Xi')$  bandlimited.
- Sampling: choose  $W \subset V \times \Omega$  such that f is uniquely determined by W.
- $f \in \operatorname{span}(\Phi' \otimes \Xi') \implies |W| \ge |\Phi'| \cdot |\Xi'|$ . But not all sampling schemes work.
- "Reconstructible vertex set": can reconstruct whole graph signal at each instant  $x \in \Omega$  from signals in this set.  $\implies$  linearly independent rows of matrix  $\Phi'$ .

< □ > < 同 > < 回 > < 回 >

#### Theorem

Two asynchronous ways (not exhaustive) to form sample set W:

#### Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

● Choose V' to be any reconstructible vertex set.

#### Theorem

Two asynchronous ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
  - For each  $v \in V'$ , choose  $|\Xi'|$  points in  $\Omega$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .

#### Theorem

Two asynchronous ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
  - For each  $v \in V'$ , choose  $|\Xi'|$  points in  $\Omega$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .

2 
$$\blacktriangleright$$
 Choose  $V' = V$ .

#### Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
  - For each  $v \in V'$ , choose  $|\Xi'|$  points in  $\Omega$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
- 2  $\blacktriangleright$  Choose V' = V.
  - Choose  $|\Xi'|$  points  $\Omega'$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .

#### Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
  - For each  $v \in V'$ , choose  $|\Xi'|$  points in  $\Omega$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
- $\bullet Choose V' = V.$ 
  - Choose  $|\Xi'|$  points  $\Omega'$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
  - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition  $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$  with  $|\Omega_j| < |\Xi'|/\delta(\Phi') + 1$  and  $\Omega_j$  are the sample points for all  $v \in I_j$ .



#### Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- For each  $v \in V'$ , choose  $|\Xi'|$  points in  $\Omega$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
- 2  $\blacktriangleright$  Choose V' = V.
  - Choose  $|\Xi'|$  points  $\Omega'$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
  - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition  $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$  with  $|\Omega_j| < |\Xi'| / \delta(\Phi') + 1$  and  $\Omega_j$  are the sample points for all  $v \in I_j$ .

Furthermore, if  $\mathcal{H}$  is spanned by analytic functions, then any random ( $\prec$  Lebesgue measure) perturbation of W still determines f a.s.

#### Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- **Choose** V' to be any reconstructible vertex set.
  - For each  $v \in V'$ , choose  $|\Xi'|$  points in  $\Omega$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
- $\bullet Choose V' = V.$ 
  - Choose  $|\Xi'|$  points  $\Omega'$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
  - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition  $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$  with  $|\Omega_j| < |\Xi'| / \delta(\Phi') + 1$  and  $\Omega_j$  are the sample points for all  $v \in I_j$ .

Furthermore, if  $\mathcal{H}$  is spanned by analytic functions, then any random ( $\prec$  Lebesgue measure) perturbation of W still determines f a.s.

• Suppose  $f(v, \cdot) \in L^2([-\pi, \pi])$  is bandlimited to a frequency band [-B, B] in the classical Fourier series sense.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- $\bullet \quad \textbf{ boose } V' \text{ to be any reconstructible vertex set.}$ 
  - For each  $v \in V'$ , choose  $|\Xi'|$  points in  $\Omega$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
- $\bullet Choose V' = V.$ 
  - Choose  $|\Xi'|$  points  $\Omega'$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
  - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition  $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$  with  $|\Omega_j| < |\Xi'| / \delta(\Phi') + 1$  and  $\Omega_j$  are the sample points for all  $v \in I_j$ .

Furthermore, if  $\mathcal{H}$  is spanned by analytic functions, then any random ( $\prec$  Lebesgue measure) perturbation of W still determines f a.s.

- Suppose  $f(v, \cdot) \in L^2([-\pi, \pi])$  is bandlimited to a frequency band [-B, B] in the classical Fourier series sense.
- Shannon-Nyquist Theorem: at least 2B samples to recover  $f(v, \cdot)$  for each v individually.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
  - For each  $v \in V'$ , choose  $|\Xi'|$  points in  $\Omega$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
- $\bullet Choose V' = V.$ 
  - Choose  $|\Xi'|$  points  $\Omega'$  such that  $f(v, \cdot) \in \operatorname{span} \Xi'$ .
  - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition  $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$  with  $|\Omega_j| < |\Xi'| / \delta(\Phi') + 1$  and  $\Omega_j$  are the sample points for all  $v \in I_j$ .

Furthermore, if  $\mathcal{H}$  is spanned by analytic functions, then any random ( $\prec$  Lebesgue measure) perturbation of W still determines f a.s.

- Suppose  $f(v, \cdot) \in L^2([-\pi, \pi])$  is bandlimited to a frequency band [-B, B] in the classical Fourier series sense.
- Shannon-Nyquist Theorem: at least 2B samples to recover  $f(v,\cdot)$  for each v individually.
- But if  $\{f(v, \cdot) : v \in V\}$  is bandlimited in graph vertex domain, then only need  $\approx 2B/\delta(\Phi')$  for each vertex to recover all signals.  $\square \to \square = \square$

W. P. Tay

• G - pixels of an image,  $|V|=784,\,\Phi$  : eigenvectors of graph Laplacian matrix  $A_G.$ 

・ロト ・回ト ・ヨト ・ヨト

- G pixels of an image,  $|V|=784,\,\Phi$  : eigenvectors of graph Laplacian matrix  $A_G.$
- $\mathcal{H} = L^2([-1,1]), \Xi$ : Chebyshev polynomials of the first kind  $\{P_j\}_{j\geq 0}$ .

- G pixels of an image,  $|V|=784, \, \Phi$  : eigenvectors of graph Laplacian matrix  $A_G.$
- $\mathcal{H} = L^2([-1,1]), \Xi$ : Chebyshev polynomials of the first kind  $\{P_j\}_{j\geq 0}$ .
- $f(\cdot,1)$  and  $f(\cdot,-1)$  correspond to images of handwritten digits '0' and '6'.



- G pixels of an image,  $|V|=784, \, \Phi$  : eigenvectors of graph Laplacian matrix  $A_G.$
- $\mathcal{H} = L^2([-1,1])$ ,  $\Xi$ : Chebyshev polynomials of the first kind  $\{P_j\}_{j\geq 0}$ .
- $f(\cdot,1)$  and  $f(\cdot,-1)$  correspond to images of handwritten digits '0' and '6'.
- For each  $x \in [-1,1], \ f(\cdot,x)$  is graph bandlimited to the first k=300 eigenvalues of  $A_G.$



- G pixels of an image,  $|V|=784,\,\Phi$  : eigenvectors of graph Laplacian matrix  $A_G.$
- $\mathcal{H} = L^2([-1,1])$ ,  $\Xi$ : Chebyshev polynomials of the first kind  $\{P_j\}_{j\geq 0}$ .
- $f(\cdot,1)$  and  $f(\cdot,-1)$  correspond to images of handwritten digits '0' and '6'.
- For each  $x \in [-1,1], \ f(\cdot,x)$  is graph bandlimited to the first k=300 eigenvalues of  $A_G.$
- For each node  $v, \ f(v, \cdot)$  is in the span of the first B=8 Chebyshev polynomials.



• Asynchronous Sampling Theorem:



• Asynchronous Sampling Theorem:

▶ sample 2k nodes (pixels)



• Asynchronous Sampling Theorem:

- sample 2k nodes (pixels)
- ▶ each node: sample B/2 random positions in [-1, 1] following  $\mathcal{N}(0, 0.5)$



• Asynchronous Sampling Theorem:

- sample 2k nodes (pixels)
- each node: sample B/2 random positions in [-1,1] following  $\mathcal{N}(0, 0.5)$

• With probability 1, impossible to reconstruct uniform samples.



• Asynchronous Sampling Theorem:

- sample 2k nodes (pixels)
- ▶ each node: sample B/2 random positions in [-1,1] following  $\mathcal{N}(0, 0.5)$

• With probability 1, impossible to reconstruct uniform samples.


• Suppose we sample  $W = \{(v_m, x_l) : m = 1, ..., 2k, l = 1, ..., B/2\}.$ 

・ロト ・回ト ・ヨト ・ヨト

- Suppose we sample  $W = \{(v_m, x_l) : m = 1, \dots, 2k, l = 1, \dots, B/2\}.$
- Add white Gaussian noise to obtain  $\tilde{f}$ .

$$ilde{f}(v_m, x_l) = \sum_{i \leq k} \sum_{0 \leq j < B} y_{i,j} \phi_i(v_m) P_j(x_l) + ext{ noise}$$

- Suppose we sample  $W = \{(v_m, x_l) : m = 1, \dots, 2k, l = 1, \dots, B/2\}.$
- Add white Gaussian noise to obtain  $\tilde{f}$ .

$$ilde{f}(v_m, x_l) = \sum_{i \leq k} \sum_{0 \leq j < B} y_{i,j} \phi_i(v_m) P_j(x_l) + \ {
m noise}$$

• Let M be the corresponding transformation matrix with entries  $\phi_i(v_m)P_j(x_l)$ .

- Suppose we sample  $W = \{(v_m, x_l) : m = 1, \dots, 2k, \ l = 1, \dots, B/2\}.$
- Add white Gaussian noise to obtain  $\tilde{f}$ .

$$\widetilde{f}(v_m, x_l) = \sum_{i \leq k} \sum_{0 \leq j < B} y_{i,j} \phi_i(v_m) P_j(x_l) + \text{ noise}$$

Let M be the corresponding transformation matrix with entries φ<sub>i</sub>(v<sub>m</sub>)P<sub>j</sub>(x<sub>l</sub>).
Recover y = (y<sub>i,j</sub>) by solving the optimization:

$$\underset{y}{\arg\min} \left\| My - \tilde{f}(W) \right\|_2^2$$

#### Sampling Theorem

## Sampling example

- Suppose we sample  $W = \{(v_m, x_l) : m = 1, \dots, 2k, l = 1, \dots, B/2\}.$
- Add white Gaussian noise to obtain  $\tilde{f}$ .

$$ilde{f}(v_m, x_l) = \sum_{i \leq k} \sum_{0 \leq j < B} y_{i,j} \phi_i(v_m) P_j(x_l) + \ {
m noise}$$

Let M be the corresponding transformation matrix with entries φ<sub>i</sub>(v<sub>m</sub>)P<sub>j</sub>(x<sub>l</sub>).
Recover y = (y<sub>i,j</sub>) by solving the optimization:

$$\underset{y}{\arg\min} \left\| My - \tilde{f}(W) \right\|_2^2$$

Result:



## Outline

Generalized Graph Signals and  ${\mathcal F} ext{-}\mathsf{Transform}$ 

Sampling Theorem

### 3 Filtering



<ロ> (日) (日) (日) (日) (日)

# Shift invariance

• A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .

メロト メタト メヨト メヨト

## Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.

### Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.
- L is shift invariant if both  $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$  and  $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$ .

### Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.
- L is shift invariant if both  $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$  and  $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$ .
- L is weakly shift invariant if  $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$ .

### Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.
- L is shift invariant if both  $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$  and  $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$ .
- L is weakly shift invariant if  $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$ .
- Shift invariant: commutes with  $A_G^p \otimes A^q$  for all  $p, q \ge 0$ .
- Weakly shift invariant: commutes with  $(A_G \otimes A)^p = A_G^p \otimes A^p$  for all  $p \ge 0$ .

### Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.
- L is shift invariant if both  $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$  and  $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$ .
- L is weakly shift invariant if  $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$ .
- Shift invariant: commutes with  $A_G^p \otimes A^q$  for all  $p, q \ge 0$ .
- Weakly shift invariant: commutes with  $(A_G \otimes A)^p = A_G^p \otimes A^p$  for all  $p \ge 0$ .
- Example: polynomial filter

### Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.
- L is shift invariant if both  $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$  and  $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$ .
- L is weakly shift invariant if  $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$ .
- Shift invariant: commutes with  $A_G^p \otimes A^q$  for all  $p, q \ge 0$ .
- Weakly shift invariant: commutes with  $(A_G \otimes A)^p = A_G^p \otimes A^p$  for all  $p \ge 0$ .
- Example: polynomial filter
  - Let  $P(x) = a_0 + a_1 x + \ldots + a_p x^p$  be a polynomial of degree  $p < \infty$ .

### Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.
- L is shift invariant if both  $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$  and  $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$ .
- L is weakly shift invariant if  $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$ .
- Shift invariant: commutes with  $A_G^p \otimes A^q$  for all  $p, q \ge 0$ .
- Weakly shift invariant: commutes with  $(A_G \otimes A)^p = A_G^p \otimes A^p$  for all  $p \ge 0$ .
- Example: polynomial filter
  - Let  $P(x) = a_0 + a_1 x + \ldots + a_p x^p$  be a polynomial of degree  $p < \infty$ .
  - ▶  $P(A_G \otimes A)$  commutes with both  $A_G \otimes \text{Id}$  and  $\text{Id} \otimes A$ ,  $\therefore$  shift invariant.

### Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.
- L is shift invariant if both  $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$  and  $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$ .
- L is weakly shift invariant if  $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$ .
- Shift invariant: commutes with  $A_G^p \otimes A^q$  for all  $p, q \ge 0$ .
- Weakly shift invariant: commutes with  $(A_G \otimes A)^p = A_G^p \otimes A^p$  for all  $p \ge 0$ .
- Example: polynomial filter
  - Let  $P(x) = a_0 + a_1 x + \ldots + a_p x^p$  be a polynomial of degree  $p < \infty$ .
  - ▶  $P(A_G \otimes A)$  commutes with both  $A_G \otimes \text{Id}$  and  $\text{Id} \otimes A$ ,  $\therefore$  shift invariant.
- Example:  $J = (1 a^{-1}A)^{-1}$ ,  $a > \rho(A)$ , commutes with  $A \implies L = A_G \otimes J$  is shift invariant, but not polynomial if dim  $\mathcal{H} = \infty$ .

イロト イボト イヨト イヨト

### Shift invariance

- A *filter* is a bounded linear transformation  $L: S(G, \mathcal{H}) \rightarrow S(G, \mathcal{H})$ .
- Tensor product filter  $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$  is an example.
- L is shift invariant if both  $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$  and  $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$ .
- L is weakly shift invariant if  $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$ .
- Shift invariant: commutes with  $A_G^p \otimes A^q$  for all  $p, q \ge 0$ .
- Weakly shift invariant: commutes with  $(A_G \otimes A)^p = A_G^p \otimes A^p$  for all  $p \ge 0$ .
- Example: polynomial filter
  - Let  $P(x) = a_0 + a_1 x + \ldots + a_p x^p$  be a polynomial of degree  $p < \infty$ .
  - ▶  $P(A_G \otimes A)$  commutes with both  $A_G \otimes \text{Id}$  and  $\text{Id} \otimes A$ ,  $\therefore$  shift invariant.
- Example: J = (1 − a<sup>-1</sup>A)<sup>-1</sup>, a > ρ(A), commutes with A ⇒
   L = A<sub>G</sub> ⊗ J is shift invariant, but not polynomial if dim H = ∞.
   If finite dimensional, J is polynomial ∵ ∃ minimal polynomial.

イロト イボト イヨト イヨト

### Theorem

• Shift invariant  $\implies$  weakly shift invariant

・ロト ・四ト ・ヨト ・ヨト

### Theorem

- Shift invariant ⇒ weakly shift invariant
- m<sub>λ</sub>(A<sub>G</sub> ⊗ A) dimension of λ-eigenspace. If m<sub>λ</sub> = 1 for all λ, weakly shift invariant ⇒ shift invariant.

### Theorem

- Shift invariant ⇒ weakly shift invariant
- m<sub>λ</sub>(A<sub>G</sub> ⊗ A) dimension of λ-eigenspace. If m<sub>λ</sub> = 1 for all λ, weakly shift invariant ⇒ shift invariant.
- Self-adjoint L: weakly shift invariant  $\iff$  shift invariant.

### Theorem

- Shift invariant ⇒ weakly shift invariant
- m<sub>λ</sub>(A<sub>G</sub> ⊗ A) dimension of λ-eigenspace. If m<sub>λ</sub> = 1 for all λ, weakly shift invariant ⇒ shift invariant.
- Self-adjoint L: weakly shift invariant  $\iff$  shift invariant.
  - If m<sub>λ</sub>(A<sub>G</sub>) = 1, traditional GSP: all shift invariant filters are polynomial. Not true in GGSP even if m<sub>λ</sub>(A<sub>G</sub> ⊗ A) = 1 [e.g., L = A<sub>G</sub> ⊗ J].

### Theorem

- Shift invariant ⇒ weakly shift invariant
- m<sub>λ</sub>(A<sub>G</sub> ⊗ A) dimension of λ-eigenspace. If m<sub>λ</sub> = 1 for all λ, weakly shift invariant ⇒ shift invariant.
- Self-adjoint L: weakly shift invariant  $\iff$  shift invariant.
- If  $m_{\lambda}(A_G) = 1$ , traditional GSP: all shift invariant filters are polynomial. Not true in GGSP even if  $m_{\lambda}(A_G \otimes A) = 1$  [e.g.,  $L = A_G \otimes J$ ].
- If m<sub>λ</sub>(A<sub>G</sub>) = 1 and m<sub>λ</sub>(A) = 1, we hope m<sub>λ</sub>(A<sub>G</sub> ⊗ A) = 1 so that all weakly shift invariant filters are shift invariant [but may have λ<sub>φ</sub>λ<sub>ξ</sub> = λ<sub>φ'</sub>λ<sub>ξ'</sub>].

### Theorem

- Shift invariant ⇒ weakly shift invariant
- m<sub>λ</sub>(A<sub>G</sub> ⊗ A) dimension of λ-eigenspace. If m<sub>λ</sub> = 1 for all λ, weakly shift invariant ⇒ shift invariant.
- Self-adjoint L: weakly shift invariant  $\iff$  shift invariant.
- If  $m_{\lambda}(A_G) = 1$ , traditional GSP: all shift invariant filters are polynomial. Not true in GGSP even if  $m_{\lambda}(A_G \otimes A) = 1$  [e.g.,  $L = A_G \otimes J$ ].
- If m<sub>λ</sub>(A<sub>G</sub>) = 1 and m<sub>λ</sub>(A) = 1, we hope m<sub>λ</sub>(A<sub>G</sub> ⊗ A) = 1 so that all weakly shift invariant filters are shift invariant [but may have λ<sub>φ</sub>λ<sub>ξ</sub> = λ<sub>φ'</sub>λ<sub>ξ'</sub>].
- Not always true, but almost always in practice ...

### Theorem

- G has at least 3 nodes.
- Each edge weight of G is chosen randomly ( $\prec$  Lebesgue measure).
- $m_{\lambda}(A) = 1 \ \forall \lambda.$

### Theorem

- G has at least 3 nodes.
- Each edge weight of G is chosen randomly ( $\prec$  Lebesgue measure).
- $m_{\lambda}(A) = 1 \ \forall \lambda.$

Then with probability one, we have:

• If  $A_G$  is the adjacency matrix of  $G: m_{\lambda} = 1$  for all  $\lambda$  of  $A_G \otimes A$ .

#### Theorem

- G has at least 3 nodes.
- Each edge weight of G is chosen randomly ( $\prec$  Lebesgue measure).
- $m_{\lambda}(A) = 1 \ \forall \lambda.$

Then with probability one, we have:

- If  $A_G$  is the adjacency matrix of  $G: m_{\lambda} = 1$  for all  $\lambda$  of  $A_G \otimes A$ .
- If A<sub>G</sub> is the Laplacian matrix of G: then the 0-eigenspace of A<sub>G</sub> ⊗ A is isomorphic to H. For λ ≠ 0, m<sub>λ</sub> = 1.

イロト イ団ト イヨト イヨト

#### Theorem

- G has at least 3 nodes.
- Each edge weight of G is chosen randomly ( $\prec$  Lebesgue measure).
- $m_{\lambda}(A) = 1 \ \forall \lambda.$

Then with probability one, we have:

- If  $A_G$  is the adjacency matrix of G:  $m_{\lambda} = 1$  for all  $\lambda$  of  $A_G \otimes A$ .
- If A<sub>G</sub> is the Laplacian matrix of G: then the 0-eigenspace of A<sub>G</sub> ⊗ A is isomorphic to H. For λ ≠ 0, m<sub>λ</sub> = 1.
  - If  $A_G$  is the Laplacian matrix, we can restrict to the orthogonal complement of 0-eigenspace of  $A_G \otimes A$ .

# Convolution filter is shift invariant

•  $g \in S(G, \mathcal{H})$ , define g \* by  $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$  is an element of  $S(G, \mathcal{H})$ , i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

メロト メタト メヨト メヨト

## Convolution filter is shift invariant

•  $g \in S(G, \mathcal{H})$ , define g \* by  $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$  is an element of  $S(G, \mathcal{H})$ , i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

•  $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$  compact.

イロト イヨト イヨト イヨト

## Convolution filter is shift invariant

•  $g \in S(G, \mathcal{H})$ , define g \* by  $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$  is an element of  $S(G, \mathcal{H})$ , i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

•  $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$  compact.

• Let  $f = \phi \otimes \xi$  with  $\phi \in \Phi$  and  $\xi \in \Xi$ . Then,  $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Convolution filter is shift invariant

•  $g \in S(G, \mathcal{H})$ , define g \* by  $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$  is an element of  $S(G, \mathcal{H})$ , i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$  compact.
- Let  $f = \phi \otimes \xi$  with  $\phi \in \Phi$  and  $\xi \in \Xi$ . Then,  $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$ .
  - $\phi \otimes \xi$  is an eigenvector of g \*

イロト イヨト イヨト イヨト

## Convolution filter is shift invariant

•  $g \in S(G, \mathcal{H})$ , define g \* by  $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$  is an element of  $S(G, \mathcal{H})$ , i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$  compact.
- Let  $f = \phi \otimes \xi$  with  $\phi \in \Phi$  and  $\xi \in \Xi$ . Then,  $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$ .
  - $\phi \otimes \xi$  is an eigenvector of g \*
  - $g * \text{ commutes with } A_G \otimes \text{Id and } \text{Id} \otimes A$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Convolution filter is shift invariant

•  $g \in S(G, \mathcal{H})$ , define g \* by  $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$  is an element of  $S(G, \mathcal{H})$ , i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$  compact.
- Let  $f = \phi \otimes \xi$  with  $\phi \in \Phi$  and  $\xi \in \Xi$ . Then,  $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$ .
  - $\phi \otimes \xi$  is an eigenvector of g \*
  - $g * \text{ commutes with } A_G \otimes \text{Id and } \text{Id} \otimes A$
  - g \* is shift invariant

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Convolution filter is shift invariant

•  $g \in S(G, \mathcal{H})$ , define g \* by  $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$  is an element of  $S(G, \mathcal{H})$ , i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$  compact.
- Let  $f = \phi \otimes \xi$  with  $\phi \in \Phi$  and  $\xi \in \Xi$ . Then,  $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$ .
  - $\phi \otimes \xi$  is an eigenvector of g \*
  - $g * \text{ commutes with } A_G \otimes \text{Id and } \text{Id} \otimes A$
  - g \* is shift invariant
- GSP: all polynomial filters are convolutions.

イロト 不得 トイヨト イヨト

## Convolution filter is shift invariant

•  $g \in S(G, \mathcal{H})$ , define g \* by  $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$  is an element of  $S(G, \mathcal{H})$ , i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$  compact.
- Let  $f = \phi \otimes \xi$  with  $\phi \in \Phi$  and  $\xi \in \Xi$ . Then,  $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$ .
  - $\phi \otimes \xi$  is an eigenvector of g \*
  - $g * \text{ commutes with } A_G \otimes \text{Id and } \text{Id} \otimes A$
  - g \* is shift invariant
- GSP: all polynomial filters are convolutions.
- Polynomial filter  $P(A_G \otimes A)$  with  $a_0 \neq 0$  is non-compact, therefore not convolution.

イロト 不得 トイヨト イヨト 二日

# Different classes of filters

Weakly shift invariant filters

Shift invariant filters

Limit of finite rank filters

< □ > < □ > < □ > < □ > < □ >

Compact filters

Convolution filters

Bandlimited filters

# Adaptive polynomial filters



• At each vertex  $u \in G$ , different graph  $G_u \implies$  different operator  $A_u$  (e.g., adjacency, Laplacian).

・ロト ・日下・ ・ ヨト・
### Adaptive polynomial filters



- At each vertex  $u \in G$ , different graph  $G_u \implies$  different operator  $A_u$  (e.g., adjacency, Laplacian).
- Adaptive polynomial filter  $F = \sum_{u} P_1(A_G)_u \otimes P_2(A_u)$

### Adaptive polynomial filters



- At each vertex  $u \in G$ , different graph  $G_u \implies$  different operator  $A_u$  (e.g., adjacency, Laplacian).
- Adaptive polynomial filter  $F = \sum_{u} P_1(A_G)_u \otimes P_2(A_u)$ 
  - ▶ P<sub>1</sub>, P<sub>2</sub> are polynomials

<ロト < 回 > < 回 > < 回 > < 回 >

### Adaptive polynomial filters



- At each vertex  $u \in G$ , different graph  $G_u \implies$  different operator  $A_u$  (e.g., adjacency, Laplacian).
- Adaptive polynomial filter  $F = \sum_{u} P_1(A_G)_u \otimes P_2(A_u)$ 
  - ▶ P<sub>1</sub>, P<sub>2</sub> are polynomials
  - $P_1(A_G)_u$ : matrix with u-th column of  $P_1(A_G)$ , 0 elsewhere.

# Adaptive polynomial filters



• Suppose 
$$P_1(x) = a_1x + b_1$$
,  $P_2(x) = a_2x + b_2$ .

イロト イロト イヨト イヨト

### Adaptive polynomial filters



- Suppose  $P_1(x) = a_1x + b_1$ ,  $P_2(x) = a_2x + b_2$ .
- F(f)(u,i) affected by f(v,j) if  $(u,v) \in G$  and  $(i,j) \in G_v$ .
- Filter F captures hidden structures in  $\mathbb{C}^4$ .

• • • • • • • • • • • •

### Adaptive polynomial filters



- Suppose  $P_1(x) = a_1x + b_1$ ,  $P_2(x) = a_2x + b_2$ .
- F(f)(u,i) affected by f(v,j) if  $(u,v) \in G$  and  $(i,j) \in G_v$ .
- Filter F captures hidden structures in  $\mathbb{C}^4$ .
- G and each  $G_{u_i}$  have different physical meanings:

Image: A math the second se

### Adaptive polynomial filters



- Suppose  $P_1(x) = a_1x + b_1$ ,  $P_2(x) = a_2x + b_2$ .
- F(f)(u,i) affected by f(v,j) if  $(u,v) \in G$  and  $(i,j) \in G_v$ .
- Filter F captures hidden structures in  $\mathbb{C}^4$ .
- G and each  $G_{u_i}$  have different physical meanings:
  - ▶ G represents time

Image: A math the second se

### Adaptive polynomial filters



- Suppose  $P_1(x) = a_1x + b_1$ ,  $P_2(x) = a_2x + b_2$ .
- F(f)(u,i) affected by f(v,j) if  $(u,v) \in G$  and  $(i,j) \in G_v$ .
- Filter F captures hidden structures in  $\mathbb{C}^4$ .
- G and each  $G_{u_i}$  have different physical meanings:
  - ▶ G represents time
  - $G_{u_i}$  correlations between node observations at time  $u_i$

Image: A math the second se

#### Adaptive polynomial filters



- Suppose  $P_1(x) = a_1x + b_1$ ,  $P_2(x) = a_2x + b_2$ .
- F(f)(u,i) affected by f(v,j) if  $(u,v) \in G$  and  $(i,j) \in G_v$ .
- Filter F captures hidden structures in  $\mathbb{C}^4$ .
- G and each  $G_{u_i}$  have different physical meanings:
  - ▶ G represents time
  - $G_{u_i}$  correlations between node observations at time  $u_i$
- Wrong to use GSP on big ambient graph containing all  $G_{u_i}$ s.

• • • • • • • • • • •

### Adaptive polynomial filters: example

• Sensor network in dynamic environments like ocean surface. Social network topology changes over time.

< □ > < □ > < □ > < □ > < □ >

#### Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n,  $f(t) \in \mathbb{C}^m$  on graph  $G_t$  with graph shift operator  $A_t$ .

### Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n,  $f(t) \in \mathbb{C}^m$  on graph  $G_t$  with graph shift operator  $A_t$ .
- $A_t$  evolves according to a known model, starting from  $A_0$ .

< □ > < 同 > < 回 > < 回 >

#### Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n,  $f(t) \in \mathbb{C}^m$  on graph  $G_t$  with graph shift operator  $A_t$ .
- $A_t$  evolves according to a known model, starting from  $A_0$ .
- f generated from a base signal  $g {:}\ f = F(g)$  where F is an adaptive polynomial filter.

#### Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n,  $f(t) \in \mathbb{C}^m$  on graph  $G_t$  with graph shift operator  $A_t$ .
- $A_t$  evolves according to a known model, starting from  $A_0$ .
- f generated from a base signal  $g {:}\ f = F(g)$  where F is an adaptive polynomial filter.
- Given observations  $\tilde{f}(t)=f(t)+N(t)$  at a subset of time indices, goal is to estimate F:

$$\min \sum_{t \in \text{Obs.}} \left\| F(g)(t) - \tilde{f}(t) \right\|_2^2$$

#### Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n,  $f(t) \in \mathbb{C}^m$  on graph  $G_t$  with graph shift operator  $A_t$ .
- $A_t$  evolves according to a known model, starting from  $A_0$ .
- f generated from a base signal  $g {:}\ f = F(g)$  where F is an adaptive polynomial filter.
- Given observations  $\tilde{f}(t)=f(t)+N(t)$  at a subset of time indices, goal is to estimate F:

$$\min \sum_{t \in \text{Obs.}} \left\| F(g)(t) - \tilde{f}(t) \right\|_2^2$$

• Recovery error:

$$\sum_{t \in \text{Unobs.}} \frac{\left\|\hat{F}(g)(t) - f(t)\right\|_2}{\|f(t)\|_2}$$

### Adaptive polynomial filters: example



Graphs evolve according to model in [4] (applications in social networks, biological neuron networks, etc.).

<sup>[4]</sup> J. Ito and K. Kaneko, "Spontaneous structure formation in a network of chaotic units with variable connection strengths," Phys. Rev. Letts., vol. 88, no. 2, p. 028701, 2002.

#### Outline

Generalized Graph Signals and  ${\mathcal F} ext{-}\mathsf{Transform}$ 

2 Sampling Theorem

#### 3 Filtering



# Summary

|              | GSP            | TV-GSP                            | GGSP                             |
|--------------|----------------|-----------------------------------|----------------------------------|
| Signal space | $\mathbb{C}^n$ | $\mathbb{C}^n\otimes\mathbb{C}^m$ | $\mathbb{C}^n\otimes\mathcal{H}$ |

# Summary

|                   | GSP            | TV-GSP                            | GGSP                               |
|-------------------|----------------|-----------------------------------|------------------------------------|
| Signal space      | $\mathbb{C}^n$ | $\mathbb{C}^n\otimes\mathbb{C}^m$ | $\mathbb{C}^n \otimes \mathcal{H}$ |
| Fourier transform | Φ              | $\Phi\otimes\Xi$ (finite dim.)    | $\Phi \otimes \Xi$ (infinite dim.) |

# Summary

|                   | GSP            | TV-GSP                            | GGSP                               |
|-------------------|----------------|-----------------------------------|------------------------------------|
| Signal space      | $\mathbb{C}^n$ | $\mathbb{C}^n\otimes\mathbb{C}^m$ | $\mathbb{C}^n \otimes \mathcal{H}$ |
| Fourier transform | $\Phi$         | $\Phi\otimes\Xi$ (finite dim.)    | $\Phi \otimes \Xi$ (infinite dim.) |
| Sampling          | vertices       | vertices                          | asynchronous joint                 |

# Summary

|                   | GSP            | TV-GSP                            | GGSP                               |
|-------------------|----------------|-----------------------------------|------------------------------------|
| Signal space      | $\mathbb{C}^n$ | $\mathbb{C}^n\otimes\mathbb{C}^m$ | $\mathbb{C}^n \otimes \mathcal{H}$ |
| Fourier transform | $\Phi$         | $\Phi\otimes\Xi$ (finite dim.)    | $\Phi \otimes \Xi$ (infinite dim.) |
| Sampling          | vertices       | vertices                          | asynchronous joint                 |
| Shift invariance  | $A_G$          | same as GSP                       | SI and WSI                         |

・ロト ・四ト ・ヨト ・ヨト

# Summary

|                   | GSP                      | TV-GSP                            | GGSP                               |
|-------------------|--------------------------|-----------------------------------|------------------------------------|
| Signal space      | $\mathbb{C}^n$           | $\mathbb{C}^n\otimes\mathbb{C}^m$ | $\mathbb{C}^n\otimes\mathcal{H}$   |
| Fourier transform | $\Phi$                   | $\Phi\otimes\Xi$ (finite dim.)    | $\Phi \otimes \Xi$ (infinite dim.) |
| Sampling          | vertices                 | vertices                          | asynchronous joint                 |
| Shift invariance  | $A_G$                    | same as GSP                       | SI and WSI                         |
| Convolution       | polynomials<br>are conv. | same as GSP                       | false                              |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣

# Summary

|                   | GSP                      | TV-GSP                            | GGSP                               |
|-------------------|--------------------------|-----------------------------------|------------------------------------|
| Signal space      | $\mathbb{C}^n$           | $\mathbb{C}^n\otimes\mathbb{C}^m$ | $\mathbb{C}^n\otimes\mathcal{H}$   |
| Fourier transform | $\Phi$                   | $\Phi\otimes\Xi$ (finite dim.)    | $\Phi \otimes \Xi$ (infinite dim.) |
| Sampling          | vertices                 | vertices                          | asynchronous joint                 |
| Shift invariance  | $A_G$                    | same as GSP                       | SI and WSI                         |
| Convolution       | polynomials<br>are conv. | same as GSP                       | false                              |
| Adaptive          | n.a.                     | n.a.                              | yes                                |

• Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .

・ロト ・四ト ・ヨト ・ヨト

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.

< □ > < □ > < □ > < □ > < □ >

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.
- Asynchronous sampling over joint vertex and  $\mathcal{H}$  domain: achieves Shannon-Nyquist rate over joint domain.

< □ > < □ > < □ > < □ > < □ >

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.
- Asynchronous sampling over joint vertex and  ${\cal H}$  domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.

イロト イヨト イヨト イヨト

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.
- $\bullet$  Asynchronous sampling over joint vertex and  ${\cal H}$  domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

<ロト < 同ト < ヨト < ヨ)

### Conclusion

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.
- Asynchronous sampling over joint vertex and  ${\cal H}$  domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

< □ > < 同 > < 回 > < 回 >

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.
- $\bullet$  Asynchronous sampling over joint vertex and  ${\cal H}$  domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

• Framework applicable for square integrable graph stochastic processes: for each  $v \in V$ ,  $X(v,t,\omega) \in L^2([0,T] \times \Omega, \mathscr{F}, \mathbb{P})$ .

< □ > < 同 > < 回 > < 回 >

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.
- Asynchronous sampling over joint vertex and  $\mathcal{H}$  domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

#### Future

- Framework applicable for square integrable graph stochastic processes: for each  $v \in V$ ,  $X(v,t,\omega) \in L^2([0,T] \times \Omega, \mathscr{F}, \mathbb{P})$ .
- Notions of stationarity can be defined w.r.t. the shift operators  $A_G \otimes \text{Id}$ ,  $\text{Id} \otimes A$  and  $A_G \otimes A$  similar to [5,6].

<sup>[5]</sup> A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911–5926, Nov. 2017. DOI: 10.1109/TSP.2017.2739099.

<sup>[6]</sup> N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul. 2017. DOI: 10.1109/TSP.2017.2690388.

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.
- Asynchronous sampling over joint vertex and  $\mathcal{H}$  domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

#### Future

- Framework applicable for square integrable graph stochastic processes: for each  $v \in V$ ,  $X(v,t,\omega) \in L^2([0,T] \times \Omega, \mathscr{F}, \mathbb{P})$ .
- Notions of stationarity can be defined w.r.t. the shift operators  $A_G \otimes \text{Id}$ ,  $\text{Id} \otimes A$  and  $A_G \otimes A$  similar to [5,6].
- "Strict" and "weak" strong and wide-sense stationarity.

<sup>[5]</sup> A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911–5926, Nov. 2017. DOI: 10.1109/TSP.2017.2739099.

<sup>[6]</sup> N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul. 2017. DOI: 10.1109/TSP.2017.2690388.

#### Conclusion

- Generalized signal processing framework for vertex signals  $f \in \mathcal{H}$ .
- Suitable Hilbert space and basis to define  $\mathcal{F}$ -transform.
- Asynchronous sampling over joint vertex and  $\mathcal{H}$  domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

- Framework applicable for square integrable graph stochastic processes: for each  $v \in V$ ,  $X(v, t, \omega) \in L^2([0, T] \times \Omega, \mathscr{F}, \mathbb{P})$ .
- Notions of stationarity can be defined w.r.t. the shift operators  $A_G \otimes \text{Id}$ ,  $\text{Id} \otimes A$  and  $A_G \otimes A$  similar to [5,6].
- "Strict" and "weak" strong and wide-sense stationarity.
- Other high dimensional extensions: simplicial complexes [7] and hypergraphs [8].

<sup>[5]</sup> A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911–5926, Nov. 2017. DOI: 10.1109/TSP.2017.2739099.

<sup>[6]</sup> N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul. 2017. DOI: 10.1109/TSP.2017.2690388.

<sup>[7]</sup> S. Barbarossa and S. Sardellitti, "Topological signal processing over simplicial complexes," arXiv preprint arXiv:1907.11577, 2019.

<sup>[8]</sup> S. Zhang, Z. Ding, and S. Cui, "Introducing hypergraph signal processing: Theoretical foundation and practical applications," arXiv preprint arXiv:1907.09203, 2019.

### Acknowledgments

# Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2018-T2-2-019

< □ > < □ > < □ > < □ > < □ >

# Thank you!

#### http://www.ntu.edu.sg/home/wptay/



・ロト ・日 ・ ・ ヨト ・

#### References I

- B. Girault, A. Ortega, and S. S. Narayanan, "Irregularity-aware graph Fourier transforms," *IEEE Transactions on Signal Processing*, vol. 66, no. 21, pp. 5746–5761, Nov. 2018.
- [2] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, "A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs," *IEEE Trans. Signal Process.*, vol. 66, no. 3, pp. 817–829, Feb. 2018.
- [3] F. Ji and W. P. Tay, "A Hilbert space theory of generalized graph signal processing," *IEEE Trans. Signal Process.*, 2019, accepted. [Online]. Available: https://arxiv.org/abs/1904.11655.
- J. Ito and K. Kaneko, "Spontaneous structure formation in a network of chaotic units with variable connection strengths," *Phys. Rev. Letts.*, vol. 88, no. 2, p. 028 701, 2002.
- [5] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," *IEEE Trans. Signal Process.*, vol. 65, no. 22, pp. 5911–5926, Nov. 2017. DOI: 10.1109/TSP.2017.2739099.

< □ > < □ > < □ > < □ > < □ >
## References II

- [6] N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul. 2017. DOI: 10.1109/TSP.2017.2690388.
- [7] S. Barbarossa and S. Sardellitti, "Topological signal processing over simplicial complexes," *arXiv preprint arXiv:1907.11577*, 2019.
- [8] S. Zhang, Z. Ding, and S. Cui, "Introducing hypergraph signal processing: Theoretical foundation and practical applications," *arXiv preprint arXiv:1907.09203*, 2019.

イロト イヨト イヨト